Среди большого разнообразия ионизирующих излучений в промышленности встречаются: α-, β- и нейтронное излучение, которые являются корпускулярными, (потоки частиц), а также у- и рентгеновское излучение, представляющие собой электромагнитные волны высокой частоты.
α-излучение является потоком ядер гелия (Не), испускаемых при радиоактивном распаде ядер некоторых веществ. Длина пробега α-частицы в воздухе составляет от 2 до 12 см, а с повышением плотности материала проникающая способность α-излучения резко уменьшается. В твердых веществах длина пробега α-частицы не превышает нескольких микрон, задерживается листом бумаги. β-излучение состоит из потока электронов или позитронов ядерного происхождения, возникающих при радиоактивном распаде ядер. Ионизирующая способность β-частиц низка, а проникающая выше, чем у α-частиц. Длина пробега электрона в воздухе — до 160 см, в биотканях — 2,5 см, свинце — 0,04 см. Поток β-частиц задерживается металлической фольгой.
Нейтронное излучение является потоком электронейтральных частиц ядра. Так называемое вторичное излучение нейтрона, когда он сталкивается с каким-либо ядром или электроном, оказывает сильное ионизирующее воздействие. Ослабление нейтронного излучения эффективно осуществляется на ядрах легких элементов, особенно водорода, а также на материалах, содержащих такие ядра, — воде, парафине, полиэтилене и др.
Рентгеновское и γ-излучения представляют электромагнитные волны, способные глубоко проникать в вещество. Ионизирующие способности их невелики (примерно как у β-излучения). Замедление рентгеновского и γ-излучения наиболее интенсивно происходит на тяжелых элементах, например свинце (пробег 20…25 см), железе, тяжелом бетоне и др.
Источниками ионизирующих излучений в промышленности могут быть высоковольтные электровакуумные установки, установки рентгеновского анализа, радиоизотопные термоэлектрические генераторы, радиационные приборы (дефектоскопы, плотномеры, влагомеры, измерители и сигнализаторы уровня жидкости) и другие устройства.
Количество ионизирующего излучения в охране труда оценивается дозой и мощностью дозы. Различают экспозиционную, поглощенную и эквивалентную дозы облучения.
Экспозиционная доза характеризует излучение по эффекту ионизации и выражает энергию излучения, преобразованную в кинетическую энергию заряженных частиц в единице массы атмосферного воздуха. В системе СИ экспозиционная доза выражается в кулон/кг (Кл/кг). Внесистемной единицей экспозиционной дозы γ- или рентгеновского излучения является рентген (Р). 1 Р соответствует образованию 2,1·109 пар ионов в 1 см3 воздуха при 0°С и давлении 760 мм рт. ст. 1 Р соответствует 2,58·10-4 Кл/кг.
Поглощенная доза дает количественную оценку действия, производимого любым ионизационным излучением в любом облученном веществе, и показывает, какое количество энергии излучения поглощено в единице массы облучаемого вещества. За единицу поглощенной дозы в системе СИ принят грэй (Гр). 1 Гр равняется дозе излучения, при которой в 1 кг вещества поглощается энергия, равная 1 Дж. Внесистемной единицей поглощенной дозы является рад — энергия в 100 эрг, поглощенная в 1 г вещества: 1 рад = 0,01 Гр.
Эквивалентная доза служит для оценки радиационной опасности облучения человека от разных видов излучения и определяется как произведение поглощенной дозы на коэффициент качества излучения К:
Дэкв = Дпогл • К (3.44)
Коэффициент качества дает количественную оценку биологического действия каждого вида излучения, которая зависит от его ионизирующей способности.
Значения коэффициента качества К
Для излучений, К которых равен 1, т.е. для γ-, β- и рентгеновского излучений, значения поглощенной и эквивалентной доз будут равны.
В системе СИ эквивалентная доза измеряется в зивертах, внесистемной единицей служит БЭР (биологический эквивалент рада); 1зв = 100 БЭР.
Мощность дозы показывает, какую дозу облучения получает среда за единицу времени. Большинство дозиметрических приборов измеряет мощность экспозиционной дозы. По ее значению можно судить об изменении интенсивности излучения. В системе СИ единицей мощности экспозиционной дозы является ампер на килограмм (А/кг), мощности поглощенной дозы — Гр/с (грэй/с); мощности эквивалентной дозы — Зв/с (зиверт/с). Внесистемными единицами служат соответственно Р/с (рентген/с); рад/с и бэр/с.
В настоящее время в нашей стране действуют «Нормы радиационной безопасности», выпущенные в 1996 г. (НРБ—96). Эти нормы определяют ПДД1 как «наибольшее значение индивидуальной эквивалентной дозы за календарный год, при котором равномерное облучение в течение 50 лет не может вызвать в состоянии здоровья неблагоприятных изменений, обнаруживаемых современными методами». Допустимые уровни облучения установлены для трех категорий лиц.
К категории А относятся профессиональные работники, постоянно или временно работающие непосредственно с источниками ионизирующих излучений. Для них установлена ПДД. К категории Б относится ограниченная часть населения, которая не работает непосредственно с источниками радиоактивного излучения, но по условиям проживания или профессиональной деятельности может подвергаться действию радиоактивных веществ. Для категории Б устанавливается предельная доза облучения (ПД). В категорию В включено остальное население страны.
Степень поражения человека зависит не только от вида, но и от характера облучения. Различают внешнее облучение человека, когда источник излучения размещается вне организма, внешне по отношению к человеку, и внутреннее, когда радиоактивная пыль или аэрозоль вместе с воздухом или пылью попадают во внутренние органы человека, становясь источником излучения и создавая повышенную опасность для человека.
По степени радиочувствительности органы человека разделяются на три группы (критические органы). К I группе относятся гонады, костный мозг; ко II — мышцы, щитовидная железа, жировая ткань, печень, почки, селезенка, желудочно-кишечный тракт, легкие, хрусталик глаза и другие органы; к III — кожный покров, костная ткань, кисти, предплечья, лодыжки и стопы.
Допустимые пределы суммарного внешнего и внутреннего облучения, бэр, за календарный год, согласно НРБ—96, представлены в таблице.
Допустимые пределы радиационного облучения, БЭР
При отсутствии источника внешнего излучения ПДД определяется внутренним облучением, которое ограничивается годовым предельно допустимым поступлением (ПДП) радиоактивных веществ в организм человека, а для отдельных лиц из населения (категории Б) — пределом годового поступления (ПГП). Исходя из этих величин, определяется среднегодовая допустимая концентрация (ДК) (в Бк/л) данного радиоактивного вещества в атмосферном воздухе или воде:
(3.45)
(3.46)
где 2,5·106 и 7,3·106 — соответственно средние объемы воздуха, вдыхаемого за год профессиональным работником (категория А) и взрослым человеком (категория Б), л/год.
Величины ДК, ПДП, ПГП для 245 радиоактивных изотопов приведены в НРБ—96.
Меры снижения опасности биологического воздействия ионизирующих излучений включают комплекс мероприятий, снижающих суммарную дозу от всех источников внутреннего и внешнего облучения до уровня, который не превышает предельно допустимой дозы (ПДД). Основные положения об организации работ и защитных мероприятий при использовании источников ионизирующих излучений установлены в «Основных санитарных правилах работы с радиоактивными веществами и другими источниками ионизирующих излучений».
Методы защиты от воздействия ионизирующих излучений принципиально однотипны. В то же время при выборе технических средств защиты необходимо учитывать, в каких условиях работает человек (при внешнем или внутреннем облучении).
Защита от внешнего облучения предусматривает создание таких защитных ограждений, которые бы снижали дозу внешнего облучения до предельно допустимых значений. Ограждения могут быть выполнены стационарными или передвижными. К стационарным ограждениям относятся защитные стены, перекрытия пола и потолка, двери, смотровые окна и др. Передвижные защитные ограждения — это различного типа ширмы, экраны, тубусы, диафрагмы, контейнеры для хранения и транспортировки радиоактивных веществ.
Использование защитных ограждений обязательно, если мощность дозы, измеренная на расстоянии 0,1 м от источника, превышает 103 м·3 в/ч.
В первую очередь при выборе защитных сооружений учитываются: спектральный состав излучения, его интенсивность, а также расстояние от источника и время пребывания под воздействием излучений.
Вследствие малых пробегов α- и β-частицы не представляют серьезной опасности как источники внешнего излучения (для защиты достаточно обеспечить расстояние 8…10 см от источника α-излучения, a для β-излучения применить защитную конструкцию из плексигласа, алюминия или стекла толщиной, превышающей максимальный пробег β-частиц).
Сложнее осуществить защиту от внешнего γ-излучения, проникающая способность которого гораздо выше. Защитные устройства позволяют только снизить в любое число раз величину дозы этого излучения. Материалом защитных устройств служат вещества, имеющие большую плотность (свинец, уран, бетон и др.). В последнее время используют воду, которая позволяет без помех проводить перезарядку и зарядку установок, выполнять ремонтные работы.
При использовании источников γ-излучения малой мощности более распространенными являются «защита расстоянием» (манипуляторы) и «защита временем» (такой регламент работ, при котором доза, полученная за время выполнения работ, не превысит предельно допустимую).
Для защиты от нейтронного излучения обычно используют воду или полиэтилен.
Рабочая часть стационарных установок ионизирующих излучений, как правило, размещается в отдельном здании или изолированном его крыле, пульт управления располагают в смежном помещении, соединенном с основным дверью, которая снабжается блокировкой, исключающей возможность случайного облучения персонала. Кроме того, предусматривается устройство принудительного помещения источника в положение хранения в случае аварии. При работе с радиоактивными веществами в открытом виде, учитывая возможность поступлений излучений (кроме обеспечения защиты от внешнего облучения), предъявляются особые требования к планировке, отделке и оборудованию помещений, а также к системе вентиляции. Специфика этих требований зависит от класса работ, определяемого по группе радиационной опасности вещества и по фактической его активности на рабочем месте.
Установлено четыре группы радиационной опасности (А, Б, В, Г) и три класса работ (I, II, III).
Для защиты персонала широко используются и индивидуальные средства зашиты.
При работах I класса и отдельных работах II класса работники обеспечиваются комбинезонами или костюмами, тапочками, спецбельем, носками, легкой обувью или ботинками, перчатками, бумажными полотенцами и носовыми платками разового пользования, а также средствами защиты органов дыхания; при работах II и III классов работники снабжаются халатами, тапочками, легкой обувью, перчатками и при необходимости средствами защиты органов дыхания (фильтрующими или изолирующими респираторами).
Защита от внутреннего облучения обеспечивается содержанием радиоактивных веществ в герметичных сосудах или запаянных ампулах; работой с ними в вытяжных шкафах или боксах; мощной вентиляцией (5…10-кратный обмен воздуха в час); средствами индивидуальной защиты, дозиметрическим контролем, дезактивацией спецодежды и рук после работы.
Лаборатории и предприятия, предназначенные для работ с источниками ионизирующих излучений (установками, хранилищами радиоактивных веществ), перед вводом их в эксплуатацию должны быть приняты комиссией, включающей представителей заинтересованных организаций, органов санитарного надзора, технических инспекций труда и органов МВД.
На основании акта комиссии местные органы санитарного надзора оформляют на срок в три года санитарный паспорт, разрешающий проведение соответствующих работ.
Администрация еще до получения источников радиационных излучений определяет перечень лиц, которые будут работать с этими источниками, а также инструктирует и обучает их и назначает работников, ответственных за радиационный контроль, учет и хранение источников. В каждом подразделении администрацией разрабатывается инструкция безопасного ведения работ, учета, хранения и выдачи источников излучения, а также сбора и хранения радиоактивных отходов.
Наладка, ремонт, монтаж ионизирующих источников осуществляются только специальными учреждениями, имеющими разрешение на производство таких работ.
Перед допуском к работе с источником ионизирующих излучений администрация обязывает персонал пройти предварительный медицинский осмотр. Только при отсутствии медицинских противопоказаний эти лица допускаются к работе.