На главную Написать сообщение Поиск по сайту Новости публикаций Плакаты и знаки по охране труда и БЖД Видео по охране труда и технике безопасности Зарубежные средства индивидуальной защиты Юридическая консультация онлайн
В начало разделаОхрана труда в химической промышленности → Вопросы охраны труда и промышленной экологии в химической промышленности

Виды ионизирующих излучений и их свойства

Ионизирующим излучением называют потоки частиц и электромагнитных квантов, в результате воздействия которых на среду образуются разнозаряженные ионы.


Различные виды излучений сопровождаются высвобождением определенного количества энергии и обладают разной проникающей способностью, поэтому они оказывают неодинаковое воздействие на организм. Наибольшую опасность для человека представляют радиоактивные излучения, такие как у-, рентгеновское, нейтронное, а- и в-излучения.


Рентгеновское и у-излучения представляют собой потоки квантовой энергии. Гамма-излучение обладает более короткими длинами волн по сравнению с рентгеновским. По своей природе и свойствам эти излучения мало отличаются друг от друга, обладают большой проникающей способностью, прямолинейностью распространения и свойством создавать вторичное и рассеянное излучение в средах, через которые проходят. Однако если рентгеновские лучи обычно получают с помощью электронного аппарата, то у-лучи испускаются нестабильными или радиоактивными изотопами.


Остальные типы ионизирующего излучения представляют собой быстродвижущиеся частицы вещества (атома), одни из которых несут электрический заряд, другие - нет.


Нейтроны - единственные незаряженные частицы, образующиеся при любом радиоактивном преобразовании, с массой, равной массе протона. Поскольку эти частицы электронейтральны, они глубоко проникают в любое вещество, включая и живые ткани. Нейтроны представляют собой основные частицы, из которых построены ядра атомов.


При прохождении через вещество они взаимодействуют только с ядрами атомов, передают им часть своей энергии, а сами изменяют направление своего движения. Ядра атомов "выскакивают" из электронной оболочки и, проходя через вещество, производят ионизацию.


Электроны - легкие отрицательно заряженные частицы, существующие во всех стабильных атомах. Электроны очень часто используются во время радиоактивного распада вещества, и тогда их называют в-частицами. Их можно получать и в лабораторных условиях. Энергия, теряемая электронами при прохождении через вещество, расходуется на возбуждение и ионизацию, а также на образование тормозного излучения.


Альфа-частицы - ядра атомов гелия, лишенные орбитальных электронов и состоящие из двух протонов и двух нейтронов, сцепленных вместе. Имеют положительный заряд, относительно тяжелы, по мере прохождения через вещество производят ионизацию вещества большой плотности. Обычно а-частицы испускаются при радиоактивном распаде естественных тяжелых элементов (радий, торий, уран, полоний и др.).


Заряженные частицы (электроны и ядра атомов гелия), проходя через вещество, взаимодействуют с электронами атомов, теряя при этом 35 и 34 эВ соответственно. При этом одна половина энергии расходуется на ионизацию (отрыв электрона от атома), а другая - на возбуждение атомов и молекул среды (перевод электрона на более удаленную от ядра оболочку).


Число ионизированных и возбужденных атомов, образуемых а-частицей на единице длины пути в среде, в сотни раз больше, чем у р-частицы (табл. 5.1).


Таблица 5.1. Пробег а- и в-частиц различной энергии в мышечной ткани

Энергия частиц, МэВ

Пробег, мкм

Энергия частиц, МэВ

Пробег, мкм

Энергия частиц, МэВ

Пробег, мкм

а

Р

а

Р

а

Р

0,1

-

110

1.0

3,0

3500

3,0

15

12500

0,3

-

700

1.2

4,0

4300

3,5

20

14500

0,5

-

1400

2.0

10

8000

5,0

50

-

0,6

-

1700







Это обусловлено тем, что масса а-частицы примерно в 7000 раз больше массы в-частицы, следовательно, при одной и той же энергии ее скорость значительно меньше, чем у в-частицы.


Испускаемые при радиоактивном распаде а-частицы обладают скоростью примерно 20 тыс. км/с, в то время как скорость в-частиц близка к скорости света и составляет 200...270 тыс. км/с. Очевидно, что чем меньше скорость частицы, тем больше вероятность ее взаимодействия с атомами среды, а следовательно, больше и потери энергии на единице пути в среде - значит, меньше пробег. Из табл. 5.1 следует, что пробег а-частиц в мышечной ткани в 1000 раз меньше пробега в-частиц той же энергии.


Когда ионизирующее излучение проходит сквозь живые организмы, оно передает свою энергию биологическим тканям и клеткам неравномерно. В результате, несмотря на небольшое количество поглощенной тканями энергии, некоторые клетки живой материи будут значительно повреждены. Суммарный эффект ионизирующего излучения, локализованного в клетках и тканях, представлен в табл. 5.2.


Таблица 5.2. Биологическое действие ионизирующего излучения

Характер воздей­ствия

Стадии воздействия

Время

Эффект воздействия

Непосредственное действие излуче­ний

1

10-24 ... 10-4 с 1016...108с

Поглощение энергии. Началь­ные взаимодействия. Рентгенов­ское и у-излучение, нейтроны Электроны, протоны, а-частицы


2

10-12... 10-8 с

Физико-химическая стадия. Пе­ренос энергии в виде ионизации на первичной траектории. Ионизованные и электронно-возбужденные молекулы


3

107...105 с, несколько часов

Химические повреждения. При мое действие. Косвенное дей­ствие. Свободные радикалы, образующиеся из воды. Возбужде­ние молекулы до тепловою рав­новесия

Косвенное дей­ствие излучений

4

Микросе­кунды, се­кунды, ми­нуты, нес­колько часов

Биомолекулярные повреждении. Изменения молекул белков, нуклеиновых кислот под влиянием процессов обмена


5

Минуты, часы, недели

Ранние биологические и физио­логические эффекты. Биохими­ческие повреждения. Гибель клеток, гибель отдельных жи­вотных


6

Годы, столе­тия

Отдаленные биологические эф­фекты Стойкое нарушение фун­кций. Генетические мутации, действие на потомство. Со­матические эффекты: рак, лей коз, сокращение продолжительности жизни, гибель организма

В основе первичных радиационно-химических изменений молекул могут лежать два механизма: 1) прямое действие, когда данная молекула испытывает изменения (ионизацию, возбуждение) непосредственно при взаимодействии с излучением; 2) косвенное действие, когда молекула непосредственно не поглощает энергию ионизирующего излучения, а получает ее путем передачи от другой молекулы.


Известно, что в биологической ткани 60...70% массы составляет вода. Поэтому рассмотрим различие между прямым и косвенным действием излучения на примере облучения воды.


Допустим, что молекула воды ионизируется заряженной частицей, в результате чего она теряет электрон:


Н2О -> Н20+е-.

Ионизированная молекула воды реагирует с другой нейтральной молекулой воды, в результате чего образуется высокореактивный радикал гидроксила ОН":


Н2О+Н2О -> Н3О+ + ОН*.

Вырванный электрон также очень быстро передает энергию окружающим молекулам воды, при этом возникает сильно возбужденная молекула воды Н2О*, которая диссоциирует с обра зованием двух радикалов, Н* и ОН*:


Н2О+е- -> Н2О*Н' + ОН'.

Свободные радикалы содержат неспаренные электроны и отличаются чрезвычайно высокой реакционной способностью. Время их жизни в воде не более 10-5 с. За это время они либо рекомбинируют друг с другом, либо реагируют с растворенным субстратом.


В присутствии растворенного в воде кислорода образуются и другие продукты радиолиза: свободный радикал гидропероксида НО2, пероксид водорода Н2О2 и атомный кислород:


Н*+ О2 -> НО2 ;
НО*2 + НО2 -> Н2О2 +20.

В клетке живого организма ситуация значительно более сложная, чем при облучении воды, особенно в том случае, если поглощающим веществом являются крупные и многокомпонентные биологические молекулы. В этом случае образуются органические радикалы D*, также отличающиеся крайне высокой реакционноспособностью. Располагая большим количеством энергии, они легко могут привести к разрыву химических связей. Именно этот процесс и происходит чаще всего в промежутке между образованием ионных пар и формированием конечных химических продуктов.


Кроме того, биологическое действие усиливается за счет влияния кислорода. Образующийся в результате взаимодействия свободного радикала с кислородом также высокореакционный продукт DО2* (D* + О2 -> DО2*) приводит к образованию новых молекул в облучаемой системе.


Получающиеся в процессе радиолиза воды свободные радикалы и молекулы окислителя, обладая высокой химической активностью, вступают в химические реакции с молекулами белка, ферментов и других структурных элементов биологической ткани, что приводит к изменению биологических процессов в организме. В результате нарушаются обменные процессы, подавляется активность ферментных систем, замедляется и прекращается рост тканей, возникают новые химические соединения, не свойственные организму, - токсины. Это приводит к нарушению жизнедеятельности отдельных систем или организма в целом.


Индуцированные свободными радикалами химические реакции вовлекают в этот процесс многие сотни и тысячи молекул, не затронутых излучением. В этом состоит специфика действия ионизирующего излучения на биологические объекты. Никакой другой вид энергии (тепловой, электрической и др.), поглощенной биологическим объектом в том же количестве, не приводит к таким изменениям, какие вызывает ионизирующее излучение.


Нежелательные радиационные эффекты воздействия облучения на организм человека условно делятся на соматические (soma - по-гречески "тело") и генетические (наследственные). Соматические эффекты проявляются непосредственно у самого облученного, а генетические - у его потомства.